From the Hubble Space Telescope
NASA's Hubble Space Telescope has imaged the Bubble Nebula (NGC 7635) with unprecedented clarity. The remarkably spherical "Bubble" marks the boundary between an intense wind of particles from the star and the more quiescent interior of the nebula. The central star of the nebula is 40 times more massive than the Sun and is responsible for a stellar wind moving at 2,000 kilometers per second (4 million miles per hour or 7 million kilometers per hour) which propels particles off the surface of the star. The bubble surface is the leading edge of this wind's gust front, which is slowing as it plows into the denser surrounding material. The surface of the bubble is not uniform because as the shell expands outward it encounters regions of the cold gas, which are of different density and therefore arrest the expansion by differing amounts, resulting in the rippled appearance. It is this gradient of background material that the wind is encountering that places the central star off center in the bubble. There is more material to the northeast of the nebula than to the southwest, so that the wind progresses less in that direction, offsetting the central star from the geometric center of the bubble. At a distance of 7,100 light-years from Earth, the Bubble Nebula is located in the constellation Cassiopeia and has a diameter of 6 light-years.
To the right of the central star is a ridge of much denser gas. The lower left portion of this ridge is closest to the star and so is brightest. It is experiencing the most intense ultraviolet radiation as well as the strong wind and is therefore being photoevaporated the fastest. The ridge forms a V-shape in the image, with two segments that are aligned at the brightest edge. The upper of these two segments is viewed quite obliquely as it trails off into the back of the nebula. The lower segment comes both toward the observer and off to the side. This lower ridge appears to lie within the sphere described by the bubble but is not actually "inside" the shocked region of gas. Instead it is being pushed up against the bubble like a hand being pushed against the outside of a party balloon. While the edge of the hand appears to be inside the balloon, it is not. As the bubble moves up but not through the ridge, bright blue arcs form where the supersonic wind strikes the ridge to form an apparent series of nested shock fronts.
The region between the star and ridge reveals several loops and arcs which have never been seen before. The high resolution capabilities of Hubble make it possible to examine these features in detail in a way that is not possible from the ground. The origin of this bubble-within-a-bubble" is unknown at this time. It may be due to a collision of two distinct winds. The stellar wind may be colliding with material streaming off the ridge as it is photoevaporated by the star's radiation.
Located at the top of the picture are dense clumps or fingers of molecular gas which have not yet encountered the expanding shell. These structures are similar in form to the columns in the Eagle Nebula, except that they are not being eroded as energetically as they are in that nebula. As in the Eagle, the clumps are seen to emit light because they are being illuminated by the strong ultraviolet radiation from the central star, which travels much faster than the shell and has reached the outer knots long before the expanding rim will.
Title: An Expanding Bubble in Space
The text is based on press release for PHOTO NO.: STScI-PRC00-04
Credits: NASA, Donald Walter (South Carolina State University), Paul Scowen and Brian Moore (Arizona State University)
Last Modified On: Monday, December 18, 2000