Abell 2218

Abell 2218
From the Hubble Space Telescope
This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. This process magnifies, brightens and distorts images of objects that lie far beyond the cluster and provides a powerful "zoom lens" for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes.
Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evolution of galaxies.
Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes.
Image Title: Hubble Views Distant Galaxies Through a Cosmic Lens
based on press release for PHOTO NO.: STScI-PRC95-14
Credits: W. Couch (University of New South Wales), R. Ellis (Cambridge University), and NASA

Back to index.

© Copyright 2000 Outreach Consortium. All Rights Reserved.

Last Modified On: Saturday, December 16, 2000