Chapter 7
The Moon
The Earth’s Moon

- Earth’s nearest neighbor is space
- Once the frontier of direct human exploration
- Born in a cataclysmic event into an original molten state, the Moon is now a dead world – no plate tectonic or volcanic activity and no air
- Suffered early impact barrage
- Plays major role in eclipses and tides
The Moon

- Moon is 1/4 the Earth’s diameter
- Gravity is 1/6 as strong
- A place of “magnificent desolation” – shapes of gray without color
Surface Features

- Surface divided into two major regions
 - **Highlands** – Bright rugged areas composed mainly of anorthosite (a rock rich in calcium and aluminum silicates) and pitted with craters
 - **Maria** – Large, smooth, dark areas surrounded by highlands and composed primarily of basalt (a congealed lava rich in iron, magnesium, and titanium), which is more dense than anorthosite
Craters

- Craters – circular features with a raised rim and range in size from less than a centimeter to a few hundred kilometers – some of the larger craters have mountain peaks at their center
Rays

- Long, light streaks of pulverized rock radiating away from many craters and best seen during full Moon
• Lunar canyons carved either by ancient lava flows or crustal cracking
Origin of Lunar Surface Features

– Nearly all lunar features (craters, maria, rays) are the result of impacts by solid bodies early in the Moon’s history.

– A circular crater forms when a high-velocity projectile disintegrates upon impact in a cloud of vaporized rock and fragments that blast a hole in the surface.
The highlands are the result of the very intense bombardment by solar system bodies soon after the Moon formed and created a solid surface.
Formation of Maria

- A mare forms when early in the Moon’s history, a few large bodies (over 100 km) strike the Moon. Molten material floods the newly formed lunar depression and eventually congeals.
Structure of the Moon

• The Moon lacks the folded mountain ranges and variety of volcanic peaks seen on Earth

• Lack of activity due to Moon cooling off much faster than Earth
 - Moon’s higher surface-to-volume ratio (relative to Earth) allows heat to escape from it faster
 - Being much less massive than the Earth, the Moon also has a smaller source of radioactive material to supply heat
The Interior of the Moon

• Interior (including crust) studied by seismic detectors set up on Moon by astronauts – essentially found to be inactive and has simpler structure than Earth’s
The Surface of the Moon - Regolith

- Surface layer is shattered rock chunks and powder (from repeated impacts) forming a **regolith** tens of meters thick
- Regolith is basaltic in maria and anorthostic in highlands
- Regolith may extend to several hundred meters in some places
The Interior of the Moon - Crust

- Average thickness of 100 km, although crust is thinner on side that faces Earth
- Reason for asymmetry is not clear, but may be related to the difference in the Earth’s gravitational force across the Moon

- Very few maria exist on side of Moon away from Earth
- Crust is composed of silicate rocks rich in aluminum and poor in iron
The Interior of the Moon - Mantle

- Relatively thick, extending 1000 km down
- Probably rich in olivine
- Appears too cold and rigid to be stirred by the Moon’s feeble heat
The Interior of the Moon - Core

- The Moon’s low average density (3.3 g/cm³) tells us its interior contains little iron.
- Some molten material may be below the mantle, but the core is smaller and contains less iron and nickel than Earth’s.
- The relatively cold Moon interior, low iron/nickel content, and slow rotation imply no lunar magnetic field – found to be the case by the Apollo astronauts.
Lunar Atmosphere

- Moon’s surface is never hidden by lunar clouds or haze, nor does reflected spectrum show any signs of gas and hence no winds.
- Lack of an atmosphere means extreme changes in lunar surface temperature from night to day.
Lunar Atmosphere

• No atmosphere for two reasons
 – Lack of volcanic activity to supply source of gas
 – Moon’s gravitational force not strong enough to retain gases even if there was a source

• Lack of atmosphere and plate tectonics implies that the Moon has been relatively unchanged for billions of years and will continue to be so into the foreseeable future
Origin and History of the Moon

- The Moon is also very large relative to its central planet – again unlike most of the other moons in the solar system
- These oddities indicate that the Moon formed differently from the other solar system moons!
Lunar Formation Hypotheses

• Before Apollo missions, three hypotheses of the Moon’s origin:
 – Moon originally a small planet orbiting the Sun and was subsequently captured by Earth’s gravity during a close approach (capture theory)
 – Earth and Moon were twins, forming side by side from a common cloud of gas and dust (twin formation theory)
 – The Moon spun out of a very fast rotating Earth in the early day of the Solar System (fission theory)
Lunar Formation Hypotheses

• Each of these hypotheses gave different predictions about Moon’s composition:
 – In capture theory, the Moon and Earth would be very different in composition, while twin theory would require they have the same composition
 – In fission theory, the Moon’s composition should be close to the Earth’s crust

• Moon rock samples proved surprising
 – For some elements, the composition was the same, but for others, it was very different
 – None of the three hypotheses could explain these observations
The Large Impact Hypothesis

- The new Moon formation hypothesis:
 - Moon formed from debris blasted out of the Earth by the impact of a Mars-sized body
 - Age of lunar rocks and lack of impact site on Earth suggests collision occurred at least 4.5 billion years ago
The Large Impact Solution

• This “large impact” idea explains:
 – The impact would vaporize low-melting-point materials (e.g., water) and disperse them explaining their lack in the Moon
 – Only surface rock blasted out of Earth leaving Earth’s core intact and little iron in the Moon
 – Easily explains composition difference with Earth
 – The splashed-out rocks that would make the Moon would more naturally lie near the ecliptic than the Earth’s equatorial plane
 – Earth’s tilted rotation axis is explained
Tides

- The Moon exerts a gravitational force on the Earth that is stronger on the side closest to the Moon and weakest on the far side.
- This difference in force from one side of an object to the other is called a *differential gravitational force*.
Tides

- This differential force draws water in the ocean into a *tidal bulge* on the sides facing and opposite the Moon.
Tides

- Earth’s rotation leads to two high/low tides per day
Solar Contributions to Tides

- When the Sun and Moon line up (new and full Moon), abnormally large *spring tides* occur.

- With the Moon at first or third quarter, the so-called *neap tides* occur, with tides not as extreme as normal tides.
Tidal Braking

- Tides create forces that slow the Earth’s rotation and move the Moon farther away – *tidal braking*
- Tidal braking caused the Moon’s synchronous rotation