next up previous contents
Next: Compst Up: Additive Model Components Previous: Compls

            compPS: Comptonization, Poutanen & Svenson

Comptonization spectra computed for different geometries using exact numerical solution of the radiative transfer equation. The computational "iterative scattering method" is similar to the standard Lambda-iteration and is described in Poutanen J., Svensson  R., 1996, ApJ, 470, 249 (PS96).  The Compton scattering kernel is the exact one as derived by Jones F. C., 1968, Phys. Rev., 167, 1159 (see PS96 for references).

 

Comptonization spectra depend on the geometry (slab, sphere, hemisphere, cylinder), Thomson optical depth tau, parameters of the electron  distribution, spectral distribution of soft seed photons, the way seed  soft photons are injected to the electron cloud, and the inclination  angle of the observer.

 

The resulting spectrum is reflected from the cool medium according to the  computational method of Magdziarz & Zdziarski (1995) (see reflect, pexrav,  pexriv models). rel_refl is the solid angle of the cold material visible  from the Comptonizing source (in units 2 pi), other parameters determine the abundances and ionization state of reflecting material (Fe_ab_re, Me_ab, xi, Tdisk). The  reflected spectrum is smeared out by rotation of  the disk due to special and general relativistic effects using  "diskline"-type kernel (with parameters Betor10, Rin, Rout).

 

Electron distribution function can be Maxwellian, power-law, cutoff  Maxwellian, or hybrid (with low temperature Maxwellian plus a power-law tail).

 

Possible geometries include plane-parallel slab, cylinder (described by  the height-to-radius ratio H/R), sphere, or hemisphere. By default the lower boundary of the "cloud" (not for spherical geometry) is fully absorbive (e.g. cold disk). However, by varying covering factor parameter cov_fac, it may be made transparent for radiation. In that case, photons from the "upper" cloud can also be upscattered in the "lower" cloud below the disk. This geometry is that for an accretion disk with cold cloudlets in the central plane (Zdziarski, Poutanen, et al. 1998, MNRAS, 301, 435).  For cylinder and hemisphere geometries, an approximate solution is obtained by averaging specific intensities over horizontal layers (see PS96). For slab and sphere geometries, no approximation is made.

 

The seed photons can be injected to the electron cloud either isotropically  and homogeneously through out the cloud, or at the bottom of the slab, cylinder, hemisphere or center of the sphere (or from the central plane of the slab if cov_frac ne 1). For the sphere, there exist a possibility (IGEOM=-5) for photon injection according to the eigenfunction of the diffusion equation sin (pi*tau'/tau)/(pi*tau'/tau), where tau' is the optical depth measured from the center (see Sunyaev & Titarchuk 1980).

 

Seed photons can be black body (bbodyrad) for Tbb>0 or multicolor disk (diskbb) for  Tbb<0. The normalization of the model also follows those models: (1) Tbb>0,  K = (RKM)**2 /(D10)**2, where D10 is the distance in units of 10 kpc and RKM is the source radius in km; (2) Tbb<0 K = (RKM)**2 /(D10)**2 cos(theta), where theta is the inclination angle.

 

Thomson optical depth of the cloud is not always good parameter to fit.  Instead the Compton parameter y=4 * tau * Theta (where Theta= Te (keV) / 511 ) can be used. Parameter y is directly related to the spectral index  and therefore is much more stable in fitting procedure. The fitting can be done taking 6th parameter negative, and optical depth then can be obtained via tau= y/(4* Te / 511).

 

The region of parameter space where the numerical method produces reasonable results is constrained as follows : 1) Electron temperature Te > 10 keV; 2) Thomson optical depth tau < 1.5 for slab geometry and tau < 3, for other geometries.

 

 par1  = Te, electron temperature in keV

 par2  = p, electron power-law index [ N(gamma)=gamma^-p ]

 par3  = gmin, minimum Lorentz factor gamma

 par4  = gmax,  maximum Lorentz factor gamma

         (a) if any of gmin or gmax < 1 then Maxwellian electron

             distribution with parameter Te

         (b) if Te=0.  then power-law electrons with parameters p,

             gmin, gmax

         (c) if both gmin,gmax>=1 but gmax<gmin then cutoff Maxwellian

             with Te, p, gmin (cutoff Lorentz factor) as parameters

         (d) if Te.ne.0, gmin, gmax >=1  then  hybrid electron distribution

             with parameters Te, p, gmin, gmax

 par5  = Tbb, temperature of soft photons

              Tbb>0 blackbody

              Tbb<0 multicolor disk with inner disk temperature Tbb

 par6  = if > 0 : tau, vertical optical depth of the corona

         if < 0 : y = 4*Theta*tau

         limits: for the slab geometry - tau < 1

                 if say tau~2 increase MAXTAU to 50

                 for sphere - tau < 3

 par7  = geom, 0 - approximate treatment of radiative transfer using

         escape probability for a sphere (very fast method); 1 - slab;

         2 - cylinder; 3 - hemisphere; 4,5 - sphere

         input photons at the bottom of the slab, cylinder, hemisphere

         or center of the sphere (or from the central plane of the slab

         if cov_fact not 1). if < 0 then geometry defined by |geom| and

         sources of incident photons are isotropic and homogeneous.

         -5 - sphere with the source of photons distributed according to

         the eigenfunction of the diffusion equation

         f(tau')=sim(pi*tau'/tau)/(pi*tau'/tau) where tau' varies between

         0 and tau.

 par8  = H/R for cylinder geometry only

 par9  = cosIncl, cosine of inclination angle

         (if < 0 then only black body)

 par10 = cov_fac, covering factor of cold clouds

         if geom =+/- 4,5 then cov_fac is dummy

 par11 = R, amount of reflection Omega/(2*pi)

        (if R < 0 then only reflection component)

 par12 = FeAb, iron abundance in units of solar

 par13 = MeAb, abundance of heavy elements in units of solar

 par14 = xi, disk ionization parameter L/(nR^2)

 par15 = temp, disk temperature for reflection in K

 par16 = beta, reflection emissivity law (r^beta)

         if beta=-10 then non-rotating disk

         if beta=10  then 1.-sqrt(6./rg))/rg**3

 par17 = Rin/Rg,  inner radius of the disk (Schwarzschild units)

 par18 = Rout/Rg, outer radius of the disk

 par19 = redshift


 

next up previous contents
Next: Compst Up: Additive Model Components Previous: Compls